
Lecture 2

James Camacho

Covering:

• Quadrature a.k.a. numerical integration,
• Finite difference methods and correctors.

Quadrature
Latin: To Divide into Boxes

Last time we briefly mentioned that an integral is the area below a curve. You can approximate it as a Riemann
sum by making boxes of width ∆x and height f(x). A negative height corresponds to a negative area.

Figure 1: Integral binning

Assuming the left boundary is at 0 and the right boundary is at x, the total area is

F (x) := f(0)∆x + f(∆x)∆x + f(2∆x)∆x + · · · + f(x − ∆x)∆x.

Taking a finite difference of size ∆x gives back the original function:

F (x + ∆x) − F (x)
∆x

= f(x).

As ∆x gets smaller the value gets more accurate, and for an infinitesimally small dx we get the integral, written as∫ x

0
f(x)dx.

A Riemann sum is a flat approximation (degree zero) of f(x) at each summand point, and is not very accurate
except for very small ∆x. A linear approximation (degree one), such as f(x)+f(x+∆x)

2 ∆x, is a little better. The
shape of each box would become a trapezoid, so this is known as the trapezoidal rule. Simpson’s rule is a quadratic
interpolation (degree two). In general, increasing the degree gives the Newton-Cotes formulas, however these are not
very stable for high degree approximations. These also still require evaluating the function hundreds of times to get
a decent approximation.

However, we should be able to do better. You can determine a degree n polynomial exactly with only n + 1
evaluations, and taking the integral of a polynomial is easy. Most functions can be approximated pretty well with a

1

https://en.wikipedia.org/wiki/Simpson%27s_rule
https://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas

relatively low degree polynomial. Modern quadrature is based on this idea. You find the right points and weights, so
that if your function were a polynomial it would return the exact integral. If it’s not quite, it will still be pretty
close. This is known as Gauss-Legendre quadrature.

You can also use other easy-to-integrate functions, e.g. using a sum of cosines gives Clenshaw-Curtis quadrature.
When performing quadrature people usually assume the bounds on the integral are between −1 and 1, and then
scale the specific points and weights if it’s not.

Any degree n polynomial can be written as a sum of Legendre polynomials, P0, P1, . . . , Pn (they span the degree n
polynomials). That’s usually true for any random polynomials you’d grab, but these are special because∫ 1

−1
PiPj dx = 0 if i ̸= j.

If f were a degree 2n + 1 polynomial we could divide it by Pn+1, getting f = Pn+1Q + R with Q the quotient and R
the remainder having degrees ≤ n. Then∫ 1

−1
Pn+1Q + R dx =

∫ 1

−1
Pn+1

(
n∑

i=0
ciPi

)
dx +

∫ 1

−1
R dx.

Everything from the first integral will evaluate to zero, so∫ 1

−1
f dx =

∫ 1

−1
R dx.

We’ve reduced the integral of a 2n + 1 degree polynomial to that of an n degree polynomial. All degree n polynomials
can be integrated using any n + 1 points, but we want to make sure Pn+1 (

∑n
i=0 ciPi) disappears, so we use the

roots of Pn+1 as our quadrature points. Finding the weights involves solving the equations∫ 1

−1
P0 dx =

n+1∑
i=0

wiP0(xi)

∫ 1

−1
P1 dx =

n+1∑
i=0

wiP1(xi)

...∫ 1

−1
Pn dx =

n+1∑
i=0

wiPn(xi).

Overall, the Gauss-Legendre integration rule with n points will exactly integrate a degree 2n − 1 polynomial. Gauss
figured out the roots and weights (by hand) up to n = 7. Today people typically approximate the roots using
Newton’s method or the Golub-Welsch algorithm. As an aside, the Greeks performed quadrature using triangles to
evaluate the integral of a parabola.

Finite Difference Methods
Introduction
In physics, the heat equation relates the change in temperature u of an object to the derivative of temperature in
each direction:

∂u

∂t
= ∂2u

∂x2
1

+ ∂2u

∂x2
2

+ · · · + ∂2u

∂x2
n

,

or more concisely,
u̇ = ∇2u.

2

https://en.wikipedia.org/wiki/Gauss%E2%80%93Legendre_quadrature
https://en.wikipedia.org/wiki/Clenshaw%E2%80%93Curtis_quadrature
https://en.wikipedia.org/wiki/Legendre_polynomials
https://en.wikipedia.org/wiki/Quadrature_of_the_Parabola

Generally physicists put dots over variables to mean “time derivative”, and ∇ is the gradient operator

∇ =

∂

∂x1
∂

∂x2
...
∂

∂xn

 .

∇2 is an abuse of notation for ∇ · (∇u) where · is the dot product which means to element-wise multiply the two
vectors and take their sum. So,

∇2u = ∇ · (∇u) =

∂

∂x1
∂

∂x2
...
∂

∂xn

 ·

∂u
∂x1
∂u
∂x2
...

∂u
∂xn

 = ∂

∂x1

∂u

∂x1
+ ∂

∂x2

∂u

∂x2
+ ∂

∂x3

∂u

∂x3

which equals the right hand side of our original equation.

In our universe we have three dimensions so n = 3, and usually x1, x2, x3 are the three coordinate axes. Due to
chirality there are two different arrangements of coordinates. Humanity and mathematicians are biased towards the
“right-handed rule” but ironically our universe is left-handed. It should also be pointed out that x1, x2, x3 do not
have to be the standard coordinates. Any three coordinates (including curves) are acceptable as long as they can be
mapped back to the standard coordinates continuously. Also, general relativity says our universe does not use these
standard coordinates anyway. . . but they’re a good enough approximation for our uses.

Stencils
We’re going to start with a simple example, a flat sheet of metal with two dimensions. Also, we’re only going to find
its steady state, where u̇ = 0.

The finite difference for the first derivative is
∂u

∂x
≈ u(x + ∆x) − u(x)

∆x
.

Taking a finite difference of this gives an approximation for the second derivative:

∂2u

∂x2 = ∂

∂x

∂u

∂x
≈

u(x+∆x)−u(x)
∆x − u(x)−u(x−∆x)

∆x

∆x
= u(x + ∆) − 2u(x) + u(x − ∆)

∆x2 .

Adding this for both directions (x1 and x2) gives a finite difference stencil, 0 1
∆x2

2
0

1
∆x2

1
− 2

∆x2
1

− 2
∆x2

2

1
∆x2

1
0 1

∆x2
2

0

 .

If the spacing between horizontal and vertical points is the same the kernel becomes

1
∆x2

0 1 0
1 −4 1
0 1 0

 .

We can also construct a 9-point stencil by rotating this by 45◦. Note that the spacing along the diagonal is ∆x
√

2,
so our new stencil will be of the form

α

∆x2

0 1 0
1 −4 1
0 1 0

+ 1 − α

2∆x2

1 0 1
0 −4 0
1 0 1

 .

Any α is fine, but when adding in correctors it’s useful to choose α = 2/3 giving the 9-point stencil

1
6∆x2

1 4 1
4 −20 4
1 4 1

 .

3

https://en.wikipedia.org/wiki/Chirality_(chemistry)
https://en.wikipedia.org/wiki/Right-hand_rule
https://www.nature.com/articles/524008b
https://en.wikipedia.org/wiki/Introduction_to_general_relativity

I would argue that due to the Hex theorem (see also slides 24-30 here) everyone should be using 7-point stencils of
the form

1
∆x2

α β 0
β −2α − 2β β
0 β α

 ,

but that’s more of a personal opinion. Maybe instead people could use hexagonal coordinate systems, as hexagons
are the bestagons.

Anyway, assuming our metal sheet is 1 meter × 1 meter, we can divide it into an n + 1 × n + 1 grid of points so
∆x = 1/n. For the 5-point stencil we need to solve the equations

1
∆x2 [−4uij + ui+1,j + ui−1,j + ui,j+1 + ui,j−1] ≈ ∂2uij

∂x2
1

+ ∂2uij

∂x2
2

= 0

for every (i, j) on our grid. Each of these approximations is at least first order. It’s a centered difference though,
which can only have even order. If you write out the Taylor series for f(x ± ∆x) you get

f(x) ± ∆xf ′(x) + ∆x2

2 f ′′(x) ± O(∆x3)

but the + and − cancel in a centered difference. Hence our 5-point stencil cannot be first order, it must be at least
second order. We’ll show it is exactly second order in a little bit, but first let’s talk about boundary conditions.

Boundary Conditions
At the left edge we don’t have a u−1,j as 0 ≤ i ≤ n, so we need to specify boundary conditions. Von Neumann
boundary conditions make the assumption that the derivative is zero at edges, so at the left edge we would replace
the horizontal second derivative with a first derivative, like so:

1
∆x2 [−2u0j + u0,j+1 + u0,j−1] + 1

2∆x
[−3u0j + 4u1j − u2j] ≈ ∂2u0j

∂x2
2

+ ∂u0j

∂x1
= 0 + 0 = 0,

using the second-order difference for ∂u/∂x1 to match the order of the interior points. We could also use Dirichlet
boundary conditions, where we assume u is zero everywhere except within our grid. If we want to simulate the edge
of the metal sheet being heated up, we could also choose a nonzero boundary. Other possibilities are reflections
(u−1j = u1j) or wrapping (u−1j = unj). Dirichlet boundaries are usually easier to code up.

Matrix Form
There are O(n2) equations, which is a lot, so usually people represent them in matrix form. First they flatten the
rows into a single list of points, usually by concatenation but sometimes red-black ordering is preferred. Then they
put the stencil coefficients in the correct locations in the matrix and solve the equation programatically. If you chose
to concat the rows together like a sane person, and didn’t try something crazy like a Hilbert curve, the matrix will
have five diagonals, with −4 along the main diagonal (Mii = −4), +1 along the super/sub diagonals (Mi,i±1 = 1),
and +1 at a distance N = n + 1 from the main diagonal (Mi,i±N = 1).

M = 1
∆x2

−4 1 0 0 · · · 1 0 0 · · ·
1 −4 1 0 · · · 0 1 0 · · ·
0 1 −4 1 · · · 0 0 1 · · ·
0 0 1 −4 · · · 0 0 0 · · ·
...

...
...

...
. . .

...
...

...
. . .

1 0 0 0 · · · −4 1 0 · · ·
0 1 0 0 · · · 1 −4 1 · · ·
0 0 1 0 · · · 0 1 −4 · · ·
...

...
...

...
. . .

...
...

...
. . .

.

The equation to solve is Muflattened = 0, as well as the boundary conditions. You can use Gaussian elimination
to solve this system of equations. You repeatedly subtract equations (rows in the matrix) until you’re left with a

4

https://en.wikipedia.org/wiki/Jordan_curve_theorem#Discrete_version
https://cseweb.ucsd.edu/classes/sp18/cse152-a/lec5.pdf
https://youtu.be/thOifuHs6eY
https://youtu.be/thOifuHs6eY
https://en.wikipedia.org/wiki/Hilbert_curve

single variable, then substitute the solved value in and continue to find new variables. Here’s an example with three
equations:

1x + 1y + 1z = 6
1x + 0y + 1z = 4
0x + 1y + 2z = 8

⇐⇒1 1 1
1 0 1
0 1 2

x
y
z

 =

6
4
8

subtract first row from second1 1 1

0 −1 0
0 1 2

x
y
z

 =

 6
−2
8

add second row to third1 1 1

0 −1 0
0 0 2

x
y
z

 =

 6
−2
6

 .

The last equation is 0x + 0y + 2z = 6 so z = 3. Similarly we find y = 2. From here it isn’t hard to substitute into
the first equation to find x = 1.

In our pentadiagonal system, all nonzero coefficients are within a band of ±N from the main diagonal, so we need to
subtract at most 2N equations to isolate a single variable. We have N2 variables, so it takes O(2N) · N2 = O(N3)
time to solve this system of equations. For ∆x = 10−3 this would take O(109), or about ten seconds of computation
if you really optimize your code and write in C++. Our method is second-order, so the solution would only be
correct wthin ±O(10−6). Machine precision would be correct to 10−15 or so.

We don’t just have to solve for the steady state; we can also move forward in time using an Euler-like method. Using
superscripts to denote time, the trapezoidal method would give us

ut+∆t = ut + ∆t

2
[
Mut + Mut+∆t

]
,

which can be rearranged to (
∆t

2 M − I

)
ut+∆t =

(
∆t

2 M + I

)
ut

where I is the identity matrix, meaning Ix = x for any x. It has ones along the main diagonal and zeros everywhere
else.

5

Order in the Space Dimension
Now let’s actually prove the order of the five-point stencil. To simplify notation, let the x subscript refer to ∂

∂x1
and

y refer to ∂
∂x2

, so uxxy = ∂3u
∂x2

1∂x2
. Also let h = ∆x. Expanding out the Taylor series for the stencil gives

1
∆x2 [−4u00 + u10 + u−1,0 + u01 + u0,−1]

= 1
h2 [− 4u

+ (u + hux + h2

2 uxx + h3

6 uxxx + h4

24uxxxx + O(h5))

+ (u − hux + h2

2 uxx − h3

6 uxxx + h4

24uxxxx − O(h5)

+ (u + huy + h2

2 uyy + h3

6 uyyy + h4

24uyyyy + O(h5))

+ (u − huy + h2

2 uyy − h3

6 uyyyy + h4

24uyyyy − O(h5))

]

= uxx + uyy + h2

12 [uxxxx + uyyyy] + O(h4).

Because it is centered, the O(h5)/h2 terms cancel out, and we’re left with the O(h4) on the right. The largest
contributor to the error is the h2

12 [uxxxx + uyyyy] term, so we have a second order method. If we could evaluate
uxxxx + uyyyy we could add a correction and get an order four method. One way to do that is by using a larger
stencil, like a 25-point stencil. For the Poisson equation we can use another trick.

Corrector
The Poisson equation is very similar to the heat equation; it takes the form

∇2u = f

and solves for the potential u given a distribution of charges f . Notice that

uxxxx + uyyyy = ∇2[uxx + uyy] − 2uxxyy = ∇2(∇2u) − 2uxxyy = ∇2f − 2uxxyy.

The correction we need is
∇2u + h2

6 uxxyy = f + h2

12∇2f.

We can approximate uxxyy with a nine point stencil. The Taylor series gives

u±1,±1 = u ± hux ± huy + h2

2 (uxx ± 2uxy + uyy) ± · · · .

If we average all four corners together, everything should cancel except for even terms in both x and y:

1
4 [u11 + · · ·] = u + h2

2 [uxx + uyy] + h4

24 [uxxxx + 6uxxyy + uyyyy] + O(h6),

where the six arises because uxxyy = uxyxy = · · · = uyyxx. Similarly, we find the average of the other four points is

1
4 [u10 + · · ·] = u + h2

4 [uxx + uyy] + h4

48 [uxxxx + uyyyy] + O(h6).

Then
u − 2

4 [u10 + · · ·] + 1
4 [u11 + · · ·] = h4

4 uxxyy + O(h6).

So our stencil to get h2

6 uxxyy is

1
6h2

 1 −2 1
−2 4 −2
1 −2 1

 .

6

Adding this to the 5-point stencil gives the corrected equation

1
6h2

1 4 1
4 −20 4
1 4 1

u = f + h2

12∇2f.

Usually we don’t know ∇2f , but we can approximate it using the same 9-point stencil! This correction gives us an
order four method; to get the same error as before we would only need ∆x = 1/32 and our algorithm would run in a
few milliseconds.

7

Homework Problems
1. Determine the order of Simpson’s rule in any way you wish.
2. Create a finite difference method for the one-dimensional wave equation,

∂2u

∂t2 = v2 ∂2u

∂x2

where v is the velocity of the wave. Set the left endpoint to u(0, t) = sin(ωt) for some angular frequency ω,
and use von Neumann boundaries for the right endpoint. Explore what different ω do, in particular when ω is
a resonant frequency.

8

	Quadrature
	Finite Difference Methods
	Introduction
	Stencils
	Boundary Conditions
	Matrix Form
	Order in the Space Dimension
	Corrector

	Homework Problems

