
Lecture 3

James Camacho

Covering:

• Linear differential equations,
• Matrix fundamentals,
• The QR Algorithm,
• Newton-like methods,
• Stiffness.

Linear Differential Equations
A linear transformation is a function T (x) that applies some scaling and rotation to x. It’s linear in the sense that

T (αx) = αT (x) and T (x + y) = T (x) + T (y).

Matrices are one such linear transformation. They originate from solving a series of equations, as we saw last week.
For example,

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

could be written in matrix form as Ax = b where

A =
[
a11 a12
a21 a22

]
; x =

[
x1
x2

]
; and b =

[
b1
b2

]
.

Usually capital letters refer to matrices, and their miniscule counterparts are the entries. Many authors will bold
vectors, i.e. Ax = b, but I will not do so. A linear differential equation takes the form

y′ = Ay

for some vector of functions

y =


y1
y2
...

yn


and an n× n matrix A. You could have higher derivative terms, but by repeatedly adding variables z = y′ you can
reduce it to the above form. As in the one-dimensional equation y′ = ay, the solutions for y′ = Ay are

y = eAty(0) = y(0) + Aty(0) + (At)2

2! y(0) + · · ·

where we define eAt through its Taylor series. If we can find two solutions, say y and z, then their sum is also a
solution, as

(y + z)′ = y′ + z′ = Ay + Az = A(y + z),

and similarly
(αy)′ = A(αy).

1

This is known as superposition and is why these differential equations are called linear. To calculate eAt we need to
find vectors v that only get scaled by A and not rotated, i.e.

Av = λv

for some constant λ. These are known as eigenvectors which is German for “particular direction”. As A is a linear
transformation from n dimensions to n dimensions, we expect there to be n eigenvectors that span this space, and
so we could write

Ay(0) = A

n∑
i=1

vi.

Then

Aky(0) = Ak
n∑

i=1
vi =

n∑
i=1

Akvi =
n∑

i=1
λk

i vi,

and our Taylor series becomes

y = eAty(0) =
∞∑

k=0

n∑
i=1

λk
i tk

k! vi =
n∑

i=1

∞∑
k=0

λk
i tk

k! vi =
n∑

i=1
eλitvi.

The eigenvectors are determined up to a constant, so we just have to make them satisfy the equation at t = 0. The
tricky part is finding the corresponding eigenvalues λi. One way is to use the QR Algorithm, but before we introduce
that we need to go over some more of the fundamentals.

Matrix Fundamentals
Matrix multiplication is done by treating the second matrix as a list of columns, so

AB =
[
Ab1 Ab2 . . . Abn

]
.

In general, matrices do not commute, so AB is not necessarily equal to BA. The identity matrix I sends every
vector back to itself, so Ix = x for all x and it does commute with all matrices. It has ones along the main diagonal
and zeroes everywhere else:

I =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 .

Figure 1: Three Dimensional Parallelpiped

2

The determinant of matrix, written det A or |A|, is the volume of a parallelpiped (skewed box) with edges taken
from the columns of A, and can be computed recursively. Suppose

A =
[

a11 a1,[2...n]
a[2···n],1 M11

]
where M11 = a[2...n],[2...n] is an (n− 1)× (n− 1) minor matrix. The subscripts denote that we are removing the
first row and first column from our original matrix. We can imagine that M11 describes an n − 1 dimensional
parallelpiped, and a11 is the height in the last dimension, so the volume would be a11|M11|. However this completely
ignores any volume coming from a21|M21|, a31|M31|, etc.

More rigorously, we can name our dimensions and use a wedge product. Say the ith row has direction n̂i, then

dimension of |Mi1| = n̂1 ∧ n̂2 ∧ · · · ∧ n̂i−1 ∧ n̂i+1 ∧ · · · ∧ n̂n,

i.e. a wedge product of all the dimensions except n̂i. I’ll write this as n̂−i for short. This allows us to orient directions.
The right hand rule says that a positive area is defined as sweeping counterclockwise from one vector to another,
and a negative area is the reverse. In wedge notation this is simply

n̂i ∧ n̂j = −n̂j ∧ n̂i,

which also implies
n̂i ∧ n̂i = −n̂i ∧ n̂i = 0

(you’re sweeping zero area between a vector and itself). Applying this to our determinant we find

n̂i ∧ n̂−i = (−1)in̂1 ∧ n̂2 ∧ · · · ∧ n̂n.

Our determinant is then
a11|M11| − a21|M21|+ a31|M31| − · · · ± an1|Mn1|

where we alternate between plus and minus. As n̂i ∧ n̂i = 0, we can add rows to each other without changing the
determinant. Also, I should point out that we did not have to choose the first column to isolate, e.g. we could have
chosen the second column and gotten the sum

−a12|M12|+ a22|M22| − a32|M32|+ · · · ∓ an2|Mn2|.

If you expand out the determinants recursively you would get

|A| =
∑

σ is a permutation
a1σ1a2σ2 · · · anσn

(−1)# inversions in σ.

From this last definition, it becomes apparent that we could transpose the rows and columns and have the same
determinant, i.e.

|AT | = |A|.

Geometrically, transposing reverses the rotation but preserves the scaling that A applies. (It also mirrors the
imaginary part, to really reverse the rotation you also need to take the complex conjugate, i.e. replace every +

√
−1

with −
√
−1. This doesn’t affect the volume.)

A matrix is said to be singular if its determinant is zero. Any nonsingular matrix has an inverse A−1 that satisfies
AA−1 = A−1A = I, and can be computed with

A−1 = 1
|A|


+|M00| −|M01| +|M02| · · · ±|M0n|
−|M10| +|M11| −|M12| · · · ∓|M1n|
+|M20| −|M21| +|M22| · · · ±|M2n|

...
...

...
. . .

...
±|Mn0| ∓|Mn1| ±|Mn2| · · · +|Mnn|


If you directly plug in AA−1 you will find you get |A|

|A| = 1 along the diagonals and zero everywhere else. As
multiplication is not commutative, A

B doesn’t make sense. You have to differentiate between right and left division,
which is why people usually write A/B = AB−1 and B\A = B−1A.

3

Numerically it would be very slow to compute the determinant or inverse using the formulae above. A better
way is through Gaussian elimination, adding and subtracting rows from one another to get the matrix in a nicer
format, such as a diagonal matrix that has zeros everywhere except the main diagonal. If you keep track of which
additions/subtractions you made, you can apply the same modifications to I and then divide the rows by the
diagonals to get A−1. To solve a system of equations Ax = b you can do the same with the vector b.

If a matrix does not have an inverse, there must be some nonzero vector x such that Ax = 0, otherwise

Ax = 0 =⇒ x = A−10 = 0.

So, |A| = 0 iff Ax = 0 has a nonzero solution. We can transform the eigenvalue equation

Av − λv = 0

into |A− λI| = 0, which will be a degree n polynomial in terms of λ, known as the characteristic polynomial. Taking
a transpose, we also find that

|AT − λI| = 0,

so the eigenvalues of AT and A are the same.

One way to find eigenvalues is using fixed point iteration or Newton’s method to find the roots of this polynomial
equation. Another way is to repeatedly multiply by A and normalize, until the largest eigenvalue pops out, i.e.

λmax ≈
Ak+1x

Akx

for some initial x and a large enough k. As

Akx = Ak
n∑

i=1
vi =

n∑
i=1

λk
i vi

the largest eigenvalue will increase exponentially faster than the next largest, and

Akx→ λk
maxv.

To get the smallest eigenvalue you could multiply by negative powers, and to get any other eigenvalue you can insert
a shift, using the matrix A + λshiftI instead.

QR Algorithm
Matrices with distinct eigenvalues can be “diagonalized” into the form

A = QΛQT

for an orthogonal matrix Q and diagonal matrix Λ. An orthogonal matrix is similar to a rotation, but it’s axis may
be in a higher-dimensional space than the vectors. For example, the “left shift” matrix,

left shift =



0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0


,

maps
[x1, x2, . . . , xn] 7→ [x2, . . . , xn, x1],

4

which is a sort of rotation, but not in n dimensions. You may also notice that its transpose shifts indices to the
right, i.e. it inverts this transformation. In general, the transpose of an orthogonal matrix is also its inverse, so we
could write the above diagonalization as

A = QΛQ−1.

If Av = λv, then
Λv = Q(Av)Q−1 = QλQ−1v = λv.

The eigenvalues of A and Λ are the same, just the entries along Λ’s diagonal. Also, the corresponding eigenvectors
of A are the columns of Q. For this reason it is known as the eigendecomposition.

A similar technique is the QR decomposition, which expresses A as the product of an orthogonal Q and an upper
triangular matrix R (an upper triangular matrix only all its nonzero entries in the upper right half of the matrix).
This can be used to find the diagonalization, by iteratively decomposing Ak → QkRk and setting Ak+1 ← RkQk.
Since

Ak+1 = Q−1
k AkQk

the eigenvalues do not change between iterations. It turns out that Ak will converge to Λ. Also, if we set

Q = lim
k→∞

Q1Q2Q3 · · ·Qk,

then Q is the orthogonal matrix that diagonalizes A.

Proof: The product of two upper triangular matrices is still upper triangular. Let

R = Rk · · ·R3R2R1

which is upper triangular. Any matrix can be written as a product of lower (L) and upper triangular (U) matrices,
so also let

Q−1 = LU.

This product is unique if we assume L has ones along its main diagonal. A little manipulation gives us

QΛkLΛ−k = QΛkQ−1U−1Λ−k

= AkU−1Λ−k

= (Q1Q2Q3 · · ·Qk)(Rk · · ·R3R2R1)U−1Λ−k

= Q′R′U−1Λ−k.

Notice that Λ, L, and Λ−1 are all lower triangular, so so is ΛkLΛ−k. We can directly evaluate its entries:

(ΛkLΛ−k)ij = Lij

(
Λii

Λjj

)k

.

Assuming that the eigenvalues are increasing (i.e. Λii > Λjj for i > j), then all terms except the diagonal will
converge to zero, leaving the identity matrix. Hence,

Q = Q′(R′U−1Λ−k).

The QR decomposition is also unique, so Q = Q′ and I = RU−1Λ−k. If Qk and Rk converge, then it must be to I
and Λ respectively. Then, for large enough k we find

Ak = QkRk = Λ.

The running time of QR decomposition for an n× n matrix is O(n3). It should converge linearly, as ΛkLΛ−k → I at
a rate (λn−1/λn)k. Modern adaptations of the QR algorithm also shift the eigenvalues each iteration, and do not
fully compute the QR decomposition, to get cubic convergence with an O(n2) running time.

We can use the QR algortihm to find the roots of a polynomial. The matrix

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
−a0 −a1 −a2 −a3 · · · −an−2 −an−1


5

has characteristic polynomial

P (x) = xn + an−1xn−1 + an−2xn−2 + · · ·+ a1x + a0,

so finding the eigenvalues will give you the roots of P (x).

Newton-like Methods
Say you want to find the roots of a function that maps n inputs to n outputs, i.e.

f1(x1, x2, . . . , xn) = 0,

f2(x1, x2, . . . , xn) = 0,

...
fn(x1, x2, . . . , xn) = 0.

When applying Newton’s method, we have n2 derivatives to work with, which we put into a matrix called the
Jacobian:

J =
[

∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

]
.

The second derivative would have n3 terms (referred to as the Hessian H), and the first few terms of the Taylor
series for f would be

f(x) = f(0) + Jx + xT Hx

2 + O(x3).

Newton’s method just uses the linear approximation, and would give a root

x∗ ≈ x− J−1f(x).

There are two issues with this:

1. We have to define all n2 derivative functions in the Jacobian.
2. It’s slow to compute J−1f(x) every single iteration.

Broyden’s method solves the first problem by approximating the Jacobian with previous iterations. On the nth
iteration calculate the change in x and f(x). Our linear approximation tells us

J∆xn ≈ ∆fn,

which gives us new information about J along the ∆xn direction. We don’t get any information in perpendicular
directions, so we want Jny = Jn−1y for perpendicular vectors y. As perpendicular vectors satisfy the Pythagorean
theorem†,

∆xT ∆x + yT y = (∆x− y)T (∆x− y) =⇒ ∆xT y = 0,

which means our modification should look like

Jn = Jn−1 + (something)∆xT .

Plugging back into Jn∆xn = ∆fn gives

Jn = Jn−1 + ∆fn − Jn−1∆xn

∆xT
n ∆xn

∆xT
n .

To solve the second issue, Broyden suggested approximating J−1 instead. As J−1∆fn ≈ ∆xn, we can simply rename
our variables to get the update rule

J−1
n = J−1

n−1 +
∆xn − J−1

n−1∆fn

∆fT
n ∆fn

∆fT
n .

†Note: A vector is essentially an n× 1 matrix. Taking its transpose gives a 1× n matrix. So,

yT y

will give a single value, y2
1 + y2

2 + · · ·+ y2
n = |y|2.

6

Stiff Matrices
The condition number is the ratio of the largest to smallest eigenvalue of a matrix, κ = max |λ|

min |λ| . To be precise, the
condition number is the ratio of singular values, the square roots of the eigenvalues of AT A, which equal the absolute
values of the eigenvalues of A for real, square matrices.

If you try solving the system
y′ = Ay

using Euler’s method or the Adams family of methods when A has a very high condition number, it will blow up. In
addition, a large condition number will exacerbate floating point errors when finding A−1 or solving Ax = b.

In finite element methods, you approximate a function f as a sum of trial functions,

f(x) ≈
n∑

j=1
cjΦj ,

then test the approximation using other test functions Ψi. The test is whether∫ 1

0

n∑
j=1

cjΦj(x)Ψtest(x)dx =
∫ 1

0
f(x)Ψtest(x)dx.

To save room, mathematicians use the notation ⟨f, Ψ⟩ to refer to∫ 1

0
f(x)Ψ(x)dx.

Solving for the right coefficients cj involves the matrix equation Ac = b where Aij = ⟨Ψi, Φj⟩ and bi = ⟨Ψi, f⟩. If we
chose the monomials x0, x1, x2, . . . , xn−1 as both our test and trial functions, A would end up as a Hilbert matrix,

A =


1 1

2
1
3 · · · 1

n1
2

1
3

1
4 · · · 1

n+1
1
3

1
4

1
5 · · · 1

n+2
...

...
...

. . .
...

1
n

1
n+1

1
n+2 · · · 1

2n−1

 .

This is extremely ill-conditioned, in fact the condition number of the Hilbert matrices grows exponentially as

O

(
(1 +

√
2)4n

√
n

)
.

For this reason, people use the Legendre polynomials or other better conditioned bases when performing finite
elment analysis.

7

Homework Problems
1. Find the sum and product of the eigenvalues of the matrix

A =


5 1 3 2
e 2 π 7
1
√

2 −3 4
2 6 −1 −4

 .

Hint: Use Vieta’s formulas on |A− λI| = 0.
2. Graph the solution to the equation

y′ =
[

0
√
−1

−
√
−1 0

]
y

for y(0) =
[
1
1

]
.

3. Find an explicit formula for the eigenvalues of the n× n rotation matrix

L =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
0 0 0 0 · · · 0
...

...
...

...
. . .

...
1 0 0 0 · · · 0


that shifts all the elements of x to the left. What about L + L−1? What about L− 2I + L−1? What are the
corresponding eigenvectors?

4. Suppose x1 + x2 + x3 + · · · + xn = 0 and x2
1 + x2

2 + x2
3 + · · · + x2

n = 1. Find the largest possible value of
x1x2 + x2x3 + x3x4 + · · ·+ xnx1.

5. Coding: Plot the condition number of the Hilbert matrices in a log-log plot against n. You may find
numpy.linalg.cond useful. Assume machine precision is 2−32. At what n does the condition number induce
an error of more than one in solving Ax = b?

6. If you used the Legendre polynomials as your bases functions, what would your condition number be?
7. Math + Coding: ⟨f, g⟩ is a measure of distance between the functions f and g. The Legendre polynomials

are orthogonal, meaning ⟨Pi, Pj⟩ = 0 unless i = j.
1. Code up the Gram-Schmidt process to determine P0, P1, . . . , Pn−1.
2. Use Newton’s method to find the roots of Pn. You will need to start close to each root. According to

StackExchange you can use the approximation formula

xi ≈
(

1− 1
8n2 + 1

8n3

)
cos

(
π

4i− 1
4n + 2

)
.

3. Solve for the correct weights so that ∫ 1

−1
P0 dx =

n+1∑
i=0

wiP0(xi)

∫ 1

−1
P1 dx =

n+1∑
i=0

wiP1(xi)

...∫ 1

−1
Pn dx =

n+1∑
i=0

wiPn(xi).

4. Try out your Gauss-Legendre quadrature with the function f(x) = ex. You should get
1∫

−1

ex dx = e− 1
e

.

8

https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
https://math.stackexchange.com/a/12270

	Linear Differential Equations
	Matrix Fundamentals
	QR Algorithm
	Newton-like Methods
	Stiff Matrices
	Homework Problems

