
Lecture 5

James Camacho

Covering:

• Optimization methods, such as:
• Binary and golden-section search,
• The simplex method,
• Gradient descent, conjugate gradient descent, and Adam.

Line Search
Binary Search

Figure 1: Binary Search

Say you have a continuous function f , and you know two points where

f(x1) > 0, f(x2) < 0.

There must be some point in between where f(x∗) = 0. You can do a binary search to find this root: Create a new
point

x′ = x1 + x2

2 ,

and if f(x′) > 0 replace x1 ← x′, otherwise f(x′) < 0 so we can replace x2 ← x′. Each update halves the region the
root may be in, so after n iterations we know the root within an error bound of O(2−n). Thus, this method is linear.
Note that Newton’s method is quadratic, but it isn’t guaranteed to converge.

1

Golden-Section Search

Figure 2: Golden-Section Search

Golden-section search is a similar idea to find extrema. Say we have three points x1, x2, x3 such that

f(x2) < f(x1), f(x3),

which means there is a local minimum between x1 and x3. We create a new point, x′, and compare f(x′) to f(x2). If
it is larger, then there is a local minimum between x1 and x2, otherwise it is between x2 and x3. The update rule is

(x1, x3, x3)←
{

(x1, x2, x′) f(x′) > f(x2)
(x2, x′, x3) f(x′) ≤ f(x2).

To keep the evaluation points evenly spaced, we want

|x2 − x3|
|x1 − x2|

= |x1 − x2|
|x2 − x′|

= |x
′ − x3|
|x2 − x′|

,

which ends up being the golden ratio

φ =
√

5− 1
2 .

Also, notice that we may need to put x′ on the other side of x2, in which case the update rule changes slightly. Like
with binary search, the region where the minimum may be will decrease exponentially.

For both of these methods, we’ve assumed we had some initial points. If we don’t, we can increase the gap between
the left and right points until we find some. A weakness for these methods is they only work in 1D.

2

Linear Programming Problem

Figure 3: Feasible region for an LP problem.

A linear programming problem (LP) has the canonical form

maximize cTx, under the constraints Ax ≤ b, x ≥ 0

where x, b, c are vectors and A is some constraint matrix. These problems often arise in economics and statistics.

For example, say you wish to maximize your victory points in the game of Settlers of Catan. It costs two wheat and
three ore to build a city, one sheep, wheat, and ore to build a development card, or one of everything except ore to
build a settlement. Each of these amount to one victory point. The linear programming problem would be:

maximize # cities + # cards + # settlements

given
0 0 1
0 1 1
2 1 1
3 1 0
0 0 1

 # cities

cards
settlements

 ≤

lumber
sheep
wheat

ore
bricks

 .

The inequalities create half-spaces of feasible regions, and the intersection of all these half-spaces is a convex region.
Thus, the maximum of cTx will be at some vertex of this region.

The simplex method chooses some random vertex, then continually moves to neighboring vertices with higher values
of cTx. First we append “slack variables” to convert the inequalities to equalities. For example,

x1 + 3x2 ≤ 5

would become
x1 + 3x2 + s = 5, s ≥ 0.

Initially only the slack variables are nonzero. To move between vertices, we switch out a slack variable for one of the
others. It’s helpful to write our LP as a tableau, in the form[

−cT 0 = 0
A I = b

]
.

The slack variables correspond to the
[
0 I

]T column. The right columns equal our slack variables, or the value of

3

our objective in the case of the top row. In our Settlers of Catan example the canonical tableau is
−1 −1 −1 | 0 0 0 0 0 = 0
0 0 1 | 1 0 0 0 0 = ℓ
0 1 1 | 0 1 0 0 0 = s
2 1 1 | 0 0 1 0 0 = w
3 1 0 | 0 0 0 1 0 = o
0 0 1 | 0 0 0 0 1 = b

 .

As long as the top row (called the objective row) has negative entries, we can do better. Say we want to switch out
our first variable (the number of cities) for a slack variable. That would mean turning the first column into a string
of zeros with a single one, then swapping with the corresponding column in the slack area.

For example, say we selected the fourth row to contain the single one. Dividing by two and subtracting it from the
first and fifth rows gives

0 −0.5 −0.5 | 0 0 0.5 0 0 = w/2
0 0 1 | 1 0 0 0 0 = ℓ
0 1 1 | 0 1 0 0 0 = s
1 0.5 0.5 | 0 0 0.5 0 0 = w/2
0 −0.5 −1.5 | 0 0 −1.5 1 0 = o− 3w/2
0 0 1 | 0 0 0 0 1 = b

 ,

and then swapping columns gives
0.5 −0.5 −0.5 | 0 0 0 0 0 = w/2
0 0 1 | 1 0 0 0 0 = ℓ
0 1 1 | 0 1 0 0 0 = s

0.5 0.5 0.5 | 0 0 1 0 0 = w/2
−1.5 −0.5 −1.5 | 0 0 0 1 0 = o− 3w/2

0 0 1 | 0 0 0 0 1 = b

 .

We can keep pivoting like this until there are no more negative values in the objective row. When pivoting we have
to be careful none of the slack variables become negative, which will happen if we choose the row that minimizes

right column value
pivot column value

and has a positive pivot column value. The simplex method may end up cycling, but Bland’s rule prevents this:
Choose the lowest-numbered variable for pivoting, and in the event of ties for the row, choose the lower row.

The simplex method has been shown to take exponentially long on some problems (see here), but is often pretty
quick. A guaranteed polynomial-time algorithm is the ellipsoid method. It creates an ellipsoid around the feasible
region, queries a point in the middle of the ellipsoid, and creates an additional constraint that the objective must be
larger than this value. This gives a new feasible region (and ellipsoid), and slowly the ellipsoid shrinks until you’re
left with the maximum. It’s a similar idea to binary or golden-section search, just for more dimensions. No one
actually uses the ellipsoid method, because usually the simplex method is quicker.

Gradient Descent
The gradient is the partial derivative w.r.t. each variable, i.e.

∇f(x1, x2, . . . , xn) =

∂f/∂x1
∂f/∂x2

...
∂f/∂xn

 .

4

https://glossary.informs.org/notes/Klee-Minty.pdf
https://en.wikipedia.org/wiki/Ellipsoid_method

For nonlinear optimization problems, you can move along the gradient to find a maximum (i.e. gradient ascent), or
in the opposite direction to find a minimum (i.e. gradient descent).

x← x− α∇f

for some step size α. If you don’t know the gradient you can approximate it with a finite difference, though that will
take many function evaluations. The best step size is a tricky problem. You could do a line search (e.g. golden-section
search) in the gradient direction, which would be the “optimal” step size, but that would require many function
evaluations (and might not actually be optimal). We’ll discuss one optimizer called Adam in the section on neural
networks.

Conjugate Gradient Method
You can also turn a linear problem into a nonlinear one. For example, to solve

Ax = b

you can rewrite it as
minimize 1

2xTAx− xTb,

which is optimized when the gradient, 1
2 [ATx + Ax]− b, is zero. The conjugate gradient method takes advantage of

this to quickly solve matrix equations. It will only work when ATx = Ax i.e. we have a symmetric matrix. We also
need it to be positive-definite (xTAx > 0 for x ̸= 0) and real-valued.

Define two inner products between vectors, the standard one

u · v = uT v

and
⟨u, v⟩ = uT Av.

Two vectors are conjugate w.r.t. A if ⟨u, v⟩ = 0. We can write x as a sum of conjugate vectors,

x =
∑

αipi,

which implies
pT

k b = pT
k Ax = pT

k A
∑

αipi =
∑

αi⟨pk, pi⟩ = αk⟨pk, pk⟩,

and hence
αk = pk · b

⟨pk, pk⟩
.

Maybe the matrix A is very large, so we only want to perform a few iterations. There are many bases p that would
work; if we choose pk so that it is close to the gradient, Axk− b, then it should converge pretty fast. Let rk = b−Axk

be the residual value. We can choose
pk = rk −

∑
i<k

⟨pi, rk⟩
⟨pi, pi⟩

pi,

which ensures this direction will be close to the gradient (in the opposite direction) and conjugate to all the previously
chosen vectors (via the Gram-Schmidt process). Then we can make the update

xk+1 = xk + αkpk = xk + pk · b
⟨pk, pk⟩

pk = xk + pk · rk

⟨pk, pk⟩
pk = xk + rk · rk

⟨pk, pk⟩
pk,

as
pk · (b− rk) = pT

k Axk = pT
k A
∑
i<k

αipi = 0,

5

and also

(rk − pk) · rk =
(∑

i<k

⟨pi, rk⟩
⟨pi, pi⟩

pi

)
·

(
b−A

∑
i<k

αipi

)

=
∑
i<k

⟨pi, rk⟩
pT

i b

⟨pi, pi⟩
−
∑
i<k

⟨pi, rk⟩
⟨pi, pi⟩

αi⟨pi, pi⟩

=
∑
i<k

αi⟨pi, rk⟩ −
∑
i<k

αi⟨pi, rk⟩

= 0.

It also turns out (after a lot of algebra) that

pk+1 = rk+1 + rk+1 · rk+1

rk · rk
pk,

so we do not need to store all previous directions. This gives a quick algorithm:

x = 0
r = b - A @ x
p = copy(r)
while True:

r_prev = copy(r)
a = (r @ r) / (p @ (A @ p))
x += a * p
r -= a * (A @ p)
p = r + (r @ r) / (r_prev @ r_prev) * p

if np.linalg.norm(r) < epsilon:
break

For an N ×N matrix, and stopping after n iterations, the running time would be O(nN2). Using n = N iterations
would give the exact solution. Note that solving a matrix equation with row reduction takes O(N3) time.

For sparse matrices, such as the finite difference matrix for the Poisson equation, we can compute Ap much quicker.
In this case it will only take O(nN) time in 1D, and O(nN2) time with two dimensions, where this time N is the
number of gridpoints in each direction.

Neural Networks
The most famous use of gradient descent is training neural nets. Each layer of a neural net is just a matrix-vector
multiplication, plus some nonlinear activation function. If there wasn’t the nonlinear function we would have

yout = Aℓ(Aℓ−1(· · ·A1xin)) = (AℓAℓ−1 · · ·A1)xin,

so the entire neural net could be written as a single matrix-vector multiplication. The most common nonlinear
function is the rectified linear unit (ReLU), which is a complicated name for

σ(x)i = max(0, xi).

I guess someone didn’t think “stay positive” was good enough advice to be published in a computer science journal.
For probabilities, the softmax function is used, which is defined as

σ(x)i = exi∑
j exj

,

and is derived by maximizing entropy (see here). For a binary classifier you can combine the two outputs into
a single one, and use the sigmoid, 1

1+e−x , instead. There are many other less common activation functions out
there. The universal approximation theorem says that a neural network (with a sufficient number of layers or size of
matrices) can approximate any function arbitrarily well.

6

https://github.com/WinVector/Examples/raw/main/dfiles/LogisticRegressionMaxEnt.pdf
https://en.wikipedia.org/wiki/Universal_approximation_theorem

You can create a loss function, such as mean-squared loss, that computes how far off the neural network outputs
are from the correct values. It would be expensive to run the neural net through every single input/output in the
dataset, so you usually take small batches to approximate the loss (~1K datums for large models, ~64 for stuff you
train at home). For probabilities or labelling images, you should use the cross-entropy loss, which is basically the
KL divergence without caring about your data’s entropy, and hence more robust to the batching. This batching idea
is known as stochastic gradient descent (SGD). Taking a gradient of the loss function, and then backpropagating the
gradient through the rest of the layers gives you the gradient for each parameter of the network.

However, you still need to find the right step size. Too large, and your parameters will fly around without ever
finding an optimum, but too small and you will never converge. The Adam method uses the noise in the gradient to
choose a good step size. If one of the derivatives is rapidly switching between positive and negative values, it means
that parameter is probably pretty optimal.

In particular, you multiply your initial step size α by the first moment over the second moment,∑
∂f/∂x√∑
(∂f/∂x)2

= m1

m2
.

You don’t want to have to keep track of the derivatives for every iteration, so you take a moving average instead:

m1 ← βm1 + (1− β)∂f

∂x
,

m2 ← βm2 + (1− β)
(

∂f

∂x

)2
,

for some β ≈ 1 (but less than; e.g. β = 0.999). The update is then

x← x− α · m1

m2
.

When the gradients are all pointing in the same direction, then m2 ≈ m1, so the step size will be about α. As you
get near an optimum, m1 will go to zero and m2 will approximate the variance, which should be much larger, so the
step size will decrease to zero.

7

https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Definition

Homework Problems
1. Computer Science: Given two sorted lists, a and b, find the median of their concatenation in O(log n) time

and constant space.
2. Math: Show that the golden ratio is the correct ratio for the golden-section search.
3. Math: Consider the linear program

min cT x, Ax = b, x ≥ 0.

Define the Lagrangian as
L(x, ν, λ) = cT x + νT (Ax− b) + λT x.

What constraints are equivalent to ∂L/∂xi = 0? This is known as the dual problem. Find the dual problem of
the Settler’s of Catan example, and explain what it represents.

4. Coding: Code up a neural network from scratch, and implement gradient descent. Try it on the XOR function.

8

	Line Search
	Binary Search
	Golden-Section Search

	Linear Programming Problem
	Gradient Descent
	Conjugate Gradient Method
	Neural Networks

	Homework Problems

